Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical properties of digital-alloy In0.49(Ga1-zAlz)0.51P/GaAs and InGaP/In0.49(Ga1-zAlz)0.51P multi-quantum wells grown by molecular-beam epitaxy

Identifieur interne : 001770 ( Chine/Analysis ); précédent : 001769; suivant : 001771

Optical properties of digital-alloy In0.49(Ga1-zAlz)0.51P/GaAs and InGaP/In0.49(Ga1-zAlz)0.51P multi-quantum wells grown by molecular-beam epitaxy

Auteurs : RBID : Pascal:06-0017816

Descripteurs français

English descriptors

Abstract

Optical properties of digital-alloy InGaAlP and InGaP/InGaAlP multiple-quantum wells (MQWs) grown by molecular beam epitaxy were characterized by 300 and 10 K-photoluminescence (PL). For digital-alloy In0.49 (Ga1-zAlz)0.51P grown at425°C with z = 0.2, 0.4, and 0.5, the energies of PL peak were in the range 2.0-2.167 eV. As the growth temperature increased from 425 to 470 °C for the digital-alloy In0.49(Ga0.6Al0.4)0.51P, the intensity of PL peak increased 2.5 times. However, the energy and line width of PL spectrum did not change significantly. The L peak at 2.148 eV and the H peak at 2.189 eV from 8 K-PL were also observed and the intensity ratios of L peak to H peak (IL/ IH) were 0.046, 0.048, and 0.043 for 425, 450, and 475 °C, respectively. For the digital-alloy InGaP/InGaAlP MQW structure grown at 450 °C, PL peak energy of 1.911 eV and PL line width of 38 meV were obtained successfully. The band gap and compositions of InGaAlP were easily controlled by digital-alloy technique without degrading the crystal quality.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0017816

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical properties of digital-alloy In
<sub>0.49</sub>
(Ga
<sub>1-z</sub>
Al
<sub>z</sub>
)
<sub>0.51</sub>
P/GaAs and InGaP/In
<sub>0.49</sub>
(Ga
<sub>1-z</sub>
Al
<sub>z</sub>
)
<sub>0.51</sub>
P multi-quantum wells grown by molecular-beam epitaxy</title>
<author>
<name sortKey="Kim, J M" uniqKey="Kim J">J. M. Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Information and Communications, Gwangju Institute of Science and Technology, 1 Oryong-dong</s1>
<s2>Buk-gu, Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Buk-gu, Gwangju 500-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, C Y" uniqKey="Park C">C. Y. Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Information and Communications, Gwangju Institute of Science and Technology, 1 Oryong-dong</s1>
<s2>Buk-gu, Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Buk-gu, Gwangju 500-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Y T" uniqKey="Lee Y">Y. T. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Information and Communications, Gwangju Institute of Science and Technology, 1 Oryong-dong</s1>
<s2>Buk-gu, Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Buk-gu, Gwangju 500-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, J D" uniqKey="Song J">J. D. Song</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Nano-device Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong</s1>
<s2>Seongbuk-gu, Seoul 136-791</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Seongbuk-gu, Seoul 136-791</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0017816</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0017816 INIST</idno>
<idno type="RBID">Pascal:06-0017816</idno>
<idno type="wicri:Area/Main/Corpus">009938</idno>
<idno type="wicri:Area/Main/Repository">009816</idno>
<idno type="wicri:Area/Chine/Extraction">001770</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloys</term>
<term>Crystal growth</term>
<term>Crystals</term>
<term>Energy gap</term>
<term>Gallium arsenides</term>
<term>Gallium phosphides</term>
<term>Growth mechanism</term>
<term>Indium phosphides</term>
<term>Inorganic compounds</term>
<term>Line widths</term>
<term>Molecular beam epitaxy</term>
<term>Multiple quantum well</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Quantum wells</term>
<term>Semiconductor materials</term>
<term>Superlattices</term>
<term>Temperature</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optique</term>
<term>Alliage</term>
<term>Gallium arséniure</term>
<term>Puits quantique</term>
<term>Epitaxie jet moléculaire</term>
<term>Puits quantique multiple</term>
<term>Photoluminescence</term>
<term>Mécanisme croissance</term>
<term>Température</term>
<term>Largeur raie</term>
<term>Bande interdite</term>
<term>Cristal</term>
<term>Superréseau</term>
<term>Croissance cristalline</term>
<term>Composé minéral</term>
<term>Semiconducteur</term>
<term>Gallium phosphure</term>
<term>Indium phosphure</term>
<term>GaAs</term>
<term>InGaP</term>
<term>4255P</term>
<term>78</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Alliage</term>
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Optical properties of digital-alloy InGaAlP and InGaP/InGaAlP multiple-quantum wells (MQWs) grown by molecular beam epitaxy were characterized by 300 and 10 K-photoluminescence (PL). For digital-alloy In
<sub>0.49</sub>
(Ga
<sub>1-z</sub>
Al
<sub>z</sub>
)
<sub>0.51</sub>
P grown at425°C with z = 0.2, 0.4, and 0.5, the energies of PL peak were in the range 2.0-2.167 eV. As the growth temperature increased from 425 to 470 °C for the digital-alloy In
<sub>0.49</sub>
(Ga
<sub>0.6</sub>
Al
<sub>0.4</sub>
)
<sub>0.51</sub>
P, the intensity of PL peak increased 2.5 times. However, the energy and line width of PL spectrum did not change significantly. The L peak at 2.148 eV and the H peak at 2.189 eV from 8 K-PL were also observed and the intensity ratios of L peak to H peak (I
<sub>L</sub>
/ I
<sub>H</sub>
) were 0.046, 0.048, and 0.043 for 425, 450, and 475 °C, respectively. For the digital-alloy InGaP/InGaAlP MQW structure grown at 450 °C, PL peak energy of 1.911 eV and PL line width of 38 meV were obtained successfully. The band gap and compositions of InGaAlP were easily controlled by digital-alloy technique without degrading the crystal quality.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>284</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical properties of digital-alloy In
<sub>0.49</sub>
(Ga
<sub>1-z</sub>
Al
<sub>z</sub>
)
<sub>0.51</sub>
P/GaAs and InGaP/In
<sub>0.49</sub>
(Ga
<sub>1-z</sub>
Al
<sub>z</sub>
)
<sub>0.51</sub>
P multi-quantum wells grown by molecular-beam epitaxy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KIM (J. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARK (C. Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEE (Y. T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SONG (J. D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Information and Communications, Gwangju Institute of Science and Technology, 1 Oryong-dong</s1>
<s2>Buk-gu, Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Nano-device Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong</s1>
<s2>Seongbuk-gu, Seoul 136-791</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>335-340</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000135612960060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0017816</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Optical properties of digital-alloy InGaAlP and InGaP/InGaAlP multiple-quantum wells (MQWs) grown by molecular beam epitaxy were characterized by 300 and 10 K-photoluminescence (PL). For digital-alloy In
<sub>0.49</sub>
(Ga
<sub>1-z</sub>
Al
<sub>z</sub>
)
<sub>0.51</sub>
P grown at425°C with z = 0.2, 0.4, and 0.5, the energies of PL peak were in the range 2.0-2.167 eV. As the growth temperature increased from 425 to 470 °C for the digital-alloy In
<sub>0.49</sub>
(Ga
<sub>0.6</sub>
Al
<sub>0.4</sub>
)
<sub>0.51</sub>
P, the intensity of PL peak increased 2.5 times. However, the energy and line width of PL spectrum did not change significantly. The L peak at 2.148 eV and the H peak at 2.189 eV from 8 K-PL were also observed and the intensity ratios of L peak to H peak (I
<sub>L</sub>
/ I
<sub>H</sub>
) were 0.046, 0.048, and 0.043 for 425, 450, and 475 °C, respectively. For the digital-alloy InGaP/InGaAlP MQW structure grown at 450 °C, PL peak energy of 1.911 eV and PL line width of 38 meV were obtained successfully. The band gap and compositions of InGaAlP were easily controlled by digital-alloy technique without degrading the crystal quality.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Alliage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Alloys</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Temperature</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cristal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Crystals</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Croissance cristalline</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Crystal growth</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium phosphure</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium phosphides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>51</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>78</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fN21>
<s1>002</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001770 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001770 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:06-0017816
   |texte=   Optical properties of digital-alloy In0.49(Ga1-zAlz)0.51P/GaAs and InGaP/In0.49(Ga1-zAlz)0.51P multi-quantum wells grown by molecular-beam epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024